Expanding the Rehabilitation of Injured Service Members Using Immersive, Large-Scale Virtual Environments

Pinata H. Sessoms1, Sarah E. Kruger2, Alison L. Pruziner3-5, and Christopher A. Rábago3,6

1Naval Health Research Center (NHRC), San Diego, CA; 2National Intrepid Center of Excellence (NICoE), Walter Reed National Military Medical Center, Bethesda, MD; 3Extremity Trauma and Amputation Center of Excellence; 4Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD; 5Department of Rehabilitation Medicine, Uniformed Services University of the Health Sciences; 6Center for the Intrepid (CFI), Brooke Army Medical Center, Joint Base San Antonio Fort Sam Houston, TX

State of the Science Symposia, April 14, 2017
NHRC Disclaimer

I am a military service member (or employee of the U.S. Government). This work was prepared as part of my official duties. Title 17, U.S.C. §105 provides the “Copyright protection under this title is not available for any work of the United States Government.” Title 17, U.S.C. §101 defines a U.S. Government work as work prepared by a military service member or employee of the U.S. Government as part of that person’s official duties.

This work was supported by the Navy Bureau of Medicine and Surgery’s Wounded, Ill, and Injured Program under work unit no. N1703. The views expressed in this research are those of the authors and do not necessarily reflect the official policy or position of the Department of the Navy, Department of the Army, Department of the Air Force, Department of Veterans Affairs, Department of Defense, or the U.S. Government. Approved for public release; distribution unlimited.

Human subjects participated in this study after giving their free and informed consent. This research has been conducted in compliance with all applicable federal regulations governing the protection of human subjects in research (Protocols NHRC.2011.0017, NHRC.2013.0022, and NMCSD.2011.0003).
Disclosures

• No personal disclosures

• The view(s) expressed herein are those of the author(s) and do not reflect the official policy or position of Brooke Army Medical Center, Naval Medical Center San Diego, Naval Health Research Center, Walter Reed National Military Medical Center, the U.S. Army Medical Department, the U.S. Army Office of the Surgeon General, the Department of the Army, Department of the Navy, Department of Defense, Department of Veterans Affairs, or the U.S. Government.

• All persons presented within have given their expressed written consent to be filmed and/or photographed.
Today’s Presentation

• **Who we are**
 - Naval Health Research Center (NHRC)
 - Walter Reed National Military Medical Center (WRNMMC)
 - Brooke Army Medical Center, Center for the Intrepid (CFI)
 - National Intrepid Center of Excellence (NICoE)

• **What we do**
 - Who we serve
 - Clinical and research priorities
DoD VR Sites for Rehabilitation
How Are Large-Scale Virtual Environments (VEs) Used in DoD Rehab?

Assessment and Treatment

- **Patient-specific** (Collins et al 2015)
 - Orthopaedics, extremity trauma, and amputation
 - (Kruger, 2011; Darter & Wilken, 2011; Gates, Darter, Dingwell, & Wilken, 2012; Kaufman, Wyatt, Sessoms, & Grabiner, 2014; Sheehan, Rábago, Rylander, Dingwell, & Wilken, 2016)
 - Traumatic brain injury (TBI)
 - (Rábago & Wilken, 2011; Sessoms et al., 2015; Onakomaiya et al., 2017)
 - Vestibular dysfunction
 - (Gottshall, Sessoms, & Bartlett, 2012; Gottshall & Sessoms, 2015)

Goal: To optimize wounded warrior rehabilitation using physical and cognitive tasking in challenging but safe environments
NHRC’s Computer Assisted Rehabilitation Environment (CAREN)

- Optical motion capture system
- 3D video projectors (3)
- 180° curved screen
- 6-DoF motion platform
- Instrumented split-belt treadmill (high performance)
- Surround sound

(Photo courtesy of NHRC)
Goal Oriented: Patient-Specific Flexibility of Applications

(PHotos and Videos courtesy of WRNMMC)
WRNMMC: Return/Learn to Ski Program

- Objective: To return patients to civilian life/sport, specifically skiing
- Virtual environment allows:
 - Simulate complex tasks prior to real-world
 - Practice/training with adaptive equipment
- Patients completed questionnaires pre-training sessions, when on ski trip, and post-training
 - 2/3 felt ski application prepared them for the ski trip
 - All but one felt application utilized musculature that was used during actual activity
 - All stated would recommend trialing equipment and practicing on CAREN to future patients
• Tasking static and dynamic stability with novel and engaging exercises relevant to patient’s life.

• Patient with knee-ankle-foot orthosis with IDEO base (kIDEO).
Objective Measures Using Virtual Reality (VR) Componentry

- Systems can be used to record data for clinical research and outcomes
 - Stimulus response
 - Task performance (e.g. reaction time), physiologic, metabolic
 - Biomechanics
 - Joint powers, moments, kinematics
 - Balance, stability

(Photo courtesy of CFI-MPL)
Online Monitoring of Brain Activities With Mobile Electroencephalography Systems

- Application for objective, real-time assessments of how an individual experiences the environment (e.g., cognition, fatigue)

(Video courtesy of NHRC)
Multisensory Assessments

Assessing the Impact of mTBI on Multisensory Integration While Maneuvering on Foot (PI: Douglas Brungart)

(Photos courtesy of NICOE)
Novel Applications of Traditional Cognitive Tests

(Video courtesy of WRNMMC)
NICoE: Acclimation to the CAREN

Three Preliminary VEs

CAREN Performance Measures:
- Balance Balls and Balance Cubes = time spent (s)
- Continuous Road = self-selected speed (m/s)

Photos courtesy of NICoE
NICoE: Diminished Performance With Comorbidities

Balance Balls
- **Diagnosis**
 - TBI Only
 - Comorbid PH
- **Time (s)**
 - $n = 63$
 - $n = 147$
- **$p = 0.001$**

Continuous Road
- **Diagnosis**
 - TBI Only
 - Comorbid PH
- **Speed (m/s)**
 - $n = 53$
 - $n = 121$
- **$p = 0.018$**

Balance Cubes - Static
- **Diagnosis**
 - TBI Only
 - Comorbid PH
- **Time (s)**
 - $n = 62$
 - $n = 147$
- **$p = 0.002$**

Balance Cubes - With Platform Motion
- **Diagnosis**
 - TBI Only
 - Comorbid PH
- **Time (s)**
 - $n = 57$
 - $n = 120$
- **$p < 0.001$**
WRNMMC: Real-Time Biofeedback

Gait Retraining for Asymmetrical Limb Loading

Traditional Direct

Direct “Game”

Indirect “Game”

(Photos and video courtesy of WRNMMC)
Purpose: To determine the effectiveness of vestibular physical therapy using large-scale VR compared with traditional therapy for patients with mild TBI (mTBI)

3 Subject Groups: 13 in each group
- VR based therapy, twice weekly
- Traditional vestibular physical therapy, twice weekly
- Hybrid therapy (one session VR, one session traditional weekly)

6 weeks of therapy, 12 visits total
NHRC: Effectiveness of VPT Using Large-Scale VR

(Video courtesy of NHRC)
NHRC: Effectiveness of VPT Using Large-Scale VR

Compare clinical outcomes of the 3 different groups
• Sensory Organization Test (SOT)
• Activities-specific Balance Confidence Scale
• Dizziness Handicap Inventory
• Functional Gait Assessment (FGA)
• Measures were taken at 3 time points, pre- (T1), mid- (T2), and post-therapy (T3)
NHRC: Vestibular Therapy
Computerized Dynamic Posturography Sensory Organization Test (SOT) Scores

(Photo courtesy of NHRC)
NHRC: Vestibular Therapy

Self-Selected Walking Speed on CAREN

(Sessoms et al., 2015)
CFI: Clinical Application for Return to Duty

CASE STUDIES

Application of a Mild Traumatic Brain Injury Rehabilitation Program in a Virtual Reality Environment: A Case Study

Christopher A. Rabago, PT, PhD, and Jason M. Wilken, PT, PhD

JNPT • Volume 35, December 2011

Copyright © 2011 Neurology Section, APTA. Unauthorized reproduction of this article is prohibited.

• Active duty Army driver/gunner
• Unit was to deploy
• Persistent postconcussive symptoms (so patient was non-deployable)
• Unresolved with time, medications, or conventional rehabilitation
Assessment (Pre-Tx) Re-assessment (Post-Tx)

Ecological Validity

Methods, materials, tasks, and settings of VR applications best approximate the real-world – integration to return to duty

(Video courtesy of NHRC)
Ecological Validity

Methods, materials, tasks, and settings of VR applications best approximate the real-world – integration back into the community

(Video courtesy of WRNMMC)
Ecological Validity

Methods, materials, tasks, and settings of VR applications best approximate the real-world – integration back into the community.
Current/Future Research

Psychological health dual treatment program (PI: Pinata Sessoms)

Dual treatment incorporating:
- Motion-Assisted, Multi-Modal Memory Desensitization and Reconsolidation (3MDR)
- Cognitive behavioral therapy for insomnia (CBT-I)

(Video courtesy of NHRC)
When Do We Use Immersive VR Environments?

• As a BRIDGE between the clinic and returning a patient to real-world activities
• To provide a TREATMENT environment that expands from traditional clinic capabilities
• To ASSESS: Allows for a controlled, measurable, repeatable environment to address all aspects of engaging in the complexity of daily activities and activities that can not be replicated in conventional clinical settings
NHRC Acknowledgments

NHRC
- LT Melissa Laird, PhD
- LCDR Brennan Cox, PhD
- Rachel Markwald, PhD
- Weimin Zheng, PhD
- Jordan Sturdy
- Amanda Markham, MPH
- Kathrine Service
- Aaron Wolf, MA
- Trevor Viboch, MA
- Joel Aftreth
- Kristen Walter, PhD

Naval Medical Center San Diego
- Dawn Bodell, PT
- Grant Meisenholder, PT
- Andrew DePratti

Other
- LCDR Seth Reini
- LCDR Jose Dominguez (ret)
- Kim Gottshall, PT, PhD
- Harvey Edwards

Funding
Navy Bureau of Medicine and Surgery’s Wounded, Ill, and Injured Program (work unit nos. 60818 and N1504)
NICoE Acknowledgments

National Intrepid Center of Excellence

NICoE
- Marcy M. Pape, MPT
- P. Nikki Kodosky, DPT
- Lisa Smith, DPT
- Jo-Manette Nousak, PhD
- Thomas DeGraba, MD
- NICoE Network Research Program
- NICoE Informatics

Uniform Services University of the Health Sciences
- Paula Bellini, MS
- M. Megan Coughlin, MD
- Michael Roy, MD

Walter Reed
- Douglas Brungart, PhD
- Tricia Kwiatkowski, MD
- Thomas Heil
- Leilani Ramos
- Melissa Koyx-Ryan, AuD
- Ashley Zaleski, AuD
- Danielle Zion, AuD

Defense and Veterans Center for Integrative Pain Management
- Krista Highland, PhD

Funding
Congressionally Directed Medical Research Programs (CDMRP) – U.S. Army Medical Research and Materiel Command Contract # W81XWH-14-C-0139 - NICoE Network Research Program Infrastructure
CDMRP – Department of Clinical Investigation (W81XWH-12-2-0068)
WRNMMC Acknowledgments
Department of Rehabilitation, Walter Reed National Military Medical Center

MATC
- Julian Acasio, MS
- Courtney Butowicz, PhD
- Christopher Dearth, PhD
- Amit Doron
- Vanessa Gatmaitan, MS
- Thomas Hulcher, BS
- Pawel Golyski, BS
- Brad Hendershot, PhD
- Elizabeth Husson, BS
- Caitlin Mahon, MS
- Barri Schnall, PT, MPT
- Emma Shaw, MA

Other
- Erik Wolf, PhD
- Brad Hatfield, PhD
- Jeremy Reitschel, PhD
- Rodolphe Gentili, PhD

Funding
DoD-VA Extremity Trauma & Amputation Center of Excellence (Public Law 110-417, National Defense Authorization Act 2009, Section 723)
Center for Rehabilitation Sciences Research at the Uniformed Services University of Health Sciences (Defense Health Program - NF90UG)
Bridging Advanced Developments for Exceptional Rehabilitation Consortium, a Department of Defense, Congressionally Directed Medical Research Programs cooperative agreement (W81XWH-11-2-0222)
CFI/BAMC Acknowledgments

CFI

- LTC Owen Hill, PA, PhD
- Michael Vernon, CP36
- Riley Sheehan, PhD
- Kelly Ohm, MS
- Pam Jahelka, PTA
- Mat Frazier, PT, DPT
- Jason Wilken, PhD, PT
- Elizabeth Russell Esposito, PhD
- Starr Brown, MSC
- Katherine Hsieh, BS
- Jill Cancio, OTD, OTR, CHT
- Chad Lyons, BS
- Christopher Rábago, PT, PhD
- Audrey Westbrook, MS
- Andrea Ikeda, MS, CP
- Simon Brown, MBA

Other

- Mitch Ruble, BS
- Amber Faw-Rivera, PTA
- Sheryl Flynn, PT, PhD
- Jonathan Dingwell, PhD
- Johnathan Rylander, PhD

Funding

Center for Rehabilitation Sciences Research at the Uniformed Services University of Health Sciences (Defense Health Program - NF90UG)
Bridging Advanced Developments for Exceptional Rehabilitation Consortium, a Department of Defense, Congressionally Directed Medical Research Programs cooperative agreement (W81XWH-11-2-0222)
NIH-R01
U.S. Army Medical Department Advanced Medical Technology Initiative, Telemedicine and Advanced Technology Research Center
Thank you!

- Pinata H. Sessoms
 pinata.h.sessoms.civ@mail.mil
- Sarah E. Kruger
 sarah.e.kruger.civ@mail.mil
- Alison L. Pruziner
 alison.l.pruziner.civ@mail.mil
- Christopher A. Rábago
 christopher.a.rabago.civ@mail.mil

NHRC: http://www.med.navy.mil/sites/nhrc
References

