Introduction to Virtual Reality and Its Application in Rehabilitation

Alison L. Pruziner1-3, Christopher A. Rábago1,4, and Pinata H. Sessoms5

1DoD-VA Extremity Trauma and Amputation Center of Excellence
2Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD
3Department of Rehabilitation Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD
4Center for the Intrepid (CFI), Brooke Army Medical Center, JBSA Ft. Sam Houston, TX
5Naval Health Research Center, San Diego, CA

Virtual Reality Applications for Advancing Rehabilitation
State of the Science Symposium Series - Bethesda, MD
Disclosures

- No personal disclosures

- The view(s) expressed herein are those of the author(s) and do not reflect the official policy or position of Brooke Army Medical Center, Navy Health Research Center, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, the U.S. Army Medical Department, the U.S. Army Office of the Surgeon General, the Department of the Army, the Department of the Navy, the Department of Defense, the Department of Veteran’s Affairs, or the U.S. Government.

- All person’s presented within have given their expressed written consent to be filmed and/or photographed.
“A **simulation** of a real world environment that is generated through computer software and is experienced by the user through a human-machine interface.”

- (Holden, 2005)

VR: Virtual Reality

VRE: Virtual Reality Environment

VE: Virtual Environment

Photo courtesy of the CFI MPL
Live simulations

- People interact with equipment and/or other people while performing activities in settings that simulate where they would operate for real.

https://www.heart.org/

Virtual simulations

- People interact with equipment and/or other people in a computer-controlled environment.

Photo courtesy of the CFI

Type of Simulation

Serious Games

- Commonly associated with electronic devices and software that people interact with for the purpose of training rather than just entertainment
- Category examples:
 - Games for Health – meant to promote health/wellness (Cognitive rehab)
 - Exergaming – a form of exercise which can track body motion

Zoezi Park- (Alpha)

www.bluemarblegameco.com

http://www.cyberbiking.com/
VR Componentry

Used to engage the **senses** and immerse the individual in a simulated environment

- **Visual**: TVs, computer monitors, head-mounted displays, mixed reality displays, projectors and movie screens

[Images and links provided for visual content.]
Used to engage the **senses** and immerse the individual in a simulated environment

- **Auditory & Communication:** Real and virtual 3D sound, speakers, headsets, microphones

Photo courtesy of WRNMMC
VR Componentry

Used to engage the **senses** and immerse the individual in a simulated environment

- **Smell:** Scent simulation to match objects in the VRE

http://static.ddmcdn.com/gif/exhaust-heat-recovery3.jpg

http://www.firearmsid.com/a_distancegrs.htm

http://www.livekorman.com

www.scentair.com

www.playacofresi.com
VR Componentry

Used to engage the senses and immerse the individual in a simulated environment

- **Touch**: Haptics for force, vibration (rumble packs), movements, and pain

www.engadget.com/2013/06/03/araig/
www.exergameland.org
VR Componentry

Used to engage the *senses* and immerse the individual in a simulated environment

- **Taste**: Digital taste interface, chemical arrays

[Image of VR componentry setup and a person using a taste simulation device.]

[Website link: www.nimesha.info]
VR Componentry

Used to interact with and manipulate the environment
- Controllers: keyboards, joystick, mice, weapons
- Kinematic: Motion capture, Kinect, data gloves, treadmills
- Kinetic: Force platforms
- Physiologic: EMG, EKG, vitals

www.vicon.com
www.costar.hw.ac.uk/costar2.html
www.deltasix.com
www.ljmu.ac.uk
VR Componentry

Can be used to record data for clinical research and outcomes

– Stimulus response
 • Task performance, physiologic, metabolic

– Biomechanics
 • Temporospatial, kinematic, and kinetic variables
 • Balance, stability
Use of VR in Rehab

• Ongoing efforts to utilize VR assessment and treatment paradigms across multiple patient populations

• VR facilitate motor learning
 – Tasks are systematically manipulated and reproducible
 – Provides feedback
 – Engaging/encourages motivation

• Training within VR environments translatable to performance in real-world situations
Take Home Messages

• VR systems combine hardware, software, and human-computer interface technologies to promote interaction with simulated “virtual” environments.

• Range of VR systems available for use/implementation.

• VR interventions are based on well-established therapeutic techniques use to identify and/or treatment physical and psychosocial deficits/symptoms

• VR-based rehabilitation tools are accessible to clinicians and can be customize to promote interactions with realistic, challenging environments while maintaining full safeties and controls.
Acknowledgments

Walter Reed National Military Medical Center

Current Research Team
- Julian Acasio, MS
- Kelly Bach, BA
- Sayeh Bozorghadad, BS
- Courtney Butowicz, PhD
- Christopher Dearth, PhD
- Amit Doron
- Vanessa Gatmaitan, MS
- Abigail Hawkins, BA
- Thomas Hulcher, BS
- Pawel Golyski, BS
- Ariana Gover-Chamlou, BA
- Erin Hagen, BS
- Brad Hendershot, PhD
- Elizabeth Husson, BS
- Brad Isaacson, PhD, MBA, MSF
- Caitlin Mahon, MS
- Justin Murphy, BA
- Giovani Ortega, PMP
- Barri Schnall, PT, MPT
- Heath Sharp, BS
- Emma Shaw, MA
- Kristin Yu, BA

Collaborators
- Brad Hatfield, PhD - University of Maryland
- Rodolphe Gentili, PhD – University of Maryland
- Jeremy Reitschel, PhD - Maryland Exercise & Robotics Center of Excellence, Baltimore VA
- Sarah Kruger, MS - National Intrepid Center of Excellence

Funding
- DoD-VA Extremity Trauma & Amputation Center of Excellence (Public Law 110-417, National Defense Authorization Act 2009, Section 723)
- Center for Rehabilitation Sciences Research at the Uniformed Services University of Health Sciences (DoD Defense Health Program - NF90UG)
- BADER Consortium, a Department of Defense, Congressionally Directed Medical Research Programs cooperative agreement (W81XWH-11-2-0222)
Acknowledgments

Center for the Intrepid - Brooke Army Medical Center

Current Research Team
- Michael Vernon, CP36
- Riley Sheehan, PhD
- Kelly Ohm, MS
- Pam Jahelka, PTA
- Elizabeth Russell Esposito, PhD
- Starr Brown, MSC
- Jill Cancio, OTD, OTR, CHT
- Andrea Ikeda, MS, CP
- Mitch Ruble, BS
- Elizabeth Lacey, PTA

Collaborators
- Jason Wilken, PhD, PT - University of Iowa, Iowa City, IA
- Sheryl Flynn, PT, PhD – Blue Marble Game Company, Los Angeles, CA
- Jonathan Dingwell, PhD – University of Texas at Austin
- Johnathan Rylander, PhD – Baylor University, Waco, TX
- Levi Hargrove, PhD – Northwestern University, Chicago, IL
- Wendy Powell, PhD – University of Portsmouth, Portsmouth, UK

Funding
- NIH-R01
- AMEDD Advanced Medical Technology Initiative, US Army Telemedicine and Advanced Technology Research Center (TATRC)
- Center for Rehabilitation Sciences Research at USUHS (DoD Defense Health Program NF90UG)
- BADER Consortium, a DoD, CDMRP cooperative agreement (W81XWH-11-2-0222)
Acknowledgments

Current Research Team
- LT Melissa Laird, PhD
- LCDR Brennan Cox, PhD
- Rachel Markwald, PhD
- Weimin Zheng, PhD
- Jordan Sturdy
- Amanda Markham, MPH
- Kathrine Service
- Aaron Wolf, MA
- Trevor Viboeh, MA
- Joel Aftreth
- Kristen Walter, PhD

Collaborators
- Kim Gottshall, PT, PhD – Naval Medical Center San Diego, San Diego, CA
- Dawn Bodell, PT – Naval Medical Center San Diego, San Diego, CA
- Grant Meisenholder, PT – Naval Medical Center San Diego, San Diego, CA
- Andrew DePratti – Naval Medical Center San Diego, San Diego, CA
- LCDR Seth Reini
- LCDR Jose Dominguez (ret)
- Harvey Edwards

Funding
- Navy Bureau of Medicine and Surgery’s Wounded, Ill, and Injured Program (work unit nos. 60818 and N1504)
Introduction to Virtual Reality and Its Application in Rehabilitation

Alison L. Pruziner1-3, Christopher A. Rábago1,4, and Pinata H. Sessoms5

1DoD-VA Extremity Trauma and Amputation Center of Excellence
2Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD
3Department of Rehabilitation Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD
4Center for the Intrepid (CFI), Brooke Army Medical Center, JBSA Ft. Sam Houston, TX
5Naval Health Research Center, San Diego, CA

Virtual Reality Applications for Advancing Rehabilitation
State of the Science Symposium Series - Bethesda, MD