Virtual Reality in Rehabilitation: Applications for Wheelchair Users

Brad E. Dicianno, MD
Associate Professor
Medical Director and COO
Human Engineering Research Laboratories (HERL)
Dept. Physical Medicine and Rehabilitation
Univ. of Pittsburgh School of Medicine
VA Pittsburgh Healthcare System
Objectives

• Understand the spectrum of real→virtual environments
• Name ≥3 factors that affect wheelchair user experience in VR
• Identify ≥3 applications of VR research for wheelchair users
• Be familiar with HERL research on VR for wheelchair users
REAL ENVIRONMENT

Tangible User Interfaces (TUI)
A TUI uses real physical objects to both represent and interact with computer-generated information (Ishii & Ullmer, 2001).

Projection Augmented models (PA model) are a type of Spatial AR display, and are closely related to TUIs

Augmented Reality (AR)

Spatial AR
Spatial AR displays project computer-generated information directly into a user’s environment (Bimber & Raskar, 2005).

‘See-through’ AR (either optical or video)
A user wears a head-mounted display, through which they can see the real world with computer-generated information superimposed on top (Cakmakci, Ha & Rolland, 2005; Billinghurst, Grasset & Looser, 2005).

Virtual Reality (VR)
VR refers to completely computer-generated environments (Ni, Schmidt, Staadt, Livingston, Ball, & May, 2006; Burdea & Coifet 2003).

Virtual Reality (VR)
Immersive VR, which uses either a head-mounted-display or a projection-based system, completely fills the user’s field-of-view.

MIXED REALITY (MR)

Augmented Virtuality (AV)
AV ‘adds’ real information to a computer-generated environment (Regenbrecht, et al. 2004).

Semi-immersive VR
A semi-immersive VR display fills a limited area of a user’s field-of-view.

Semi-immersive VR using the Barco Baron workbench (Drettakis, Roussou, Tsingos, Reche & Gallo, 2004).

Immersive VR
Projection-based immersive VR. The users are fully immersed in the ‘CAVE’ (FakeSpace, 2006; Cruz-Neira, Sandin & DeFanti, 1993).

VIRTUAL ENVIRONMENT

Using physical objects to create a virtual model (Ichida, Itoh, & Kitamura, 2004). As a user adds a physical ‘ActiveCube’ to the construction, the equivalent virtual model is automatically updated.

The ‘Bubble Cosmos’ – ‘Emerging Technology’ at SIGGRAPH’06. The paths of the smoke-filled bubbles are tracked, and an image is projected into them as they rise.

See-through AR: the butterfly is computer-generated, and everything else is real (Fischer, Bartz & Strasser, 2006; Kölsch, Bane, Höllner, & Turk, 2006).

Semi-immersive VR using the Barco Baron workbench (Drettakis, Roussou, Tsingos, Reche & Gallo, 2004).

Projection-based immersive VR. The users are fully immersed in the ‘CAVE’ (FakeSpace, 2006; Cruz-Neira, Sandin & DeFanti, 1993).
Important Design Factors

• Design affects:
 – perception
 – behavior
 – driving performance
 – sense of presence

• Visualization of your own avatar
• Display type (head-mounted display v monitor)
• Ability to freely change the field of view (FOV)

McGill Immersive Wheelchair Simulator (miWe)

- Home computer set up w/ joystick
- 6 driving activities
- N=35
- miWe vs video game
- Practice 20min/2d x 2wk
- Wheelchair skills test (WST)
- 6% increase in scores in miWE (vs 3% in control)

VR for Accessibility

- U.K. 1996 Disability Discrimination Act (DDA)
- Wheelchair VR system
- High-quality immersive graphics
- Sense of "feel": electromechanical force-feedback

Diagram 9 Effective clear width of doors
Neglect

- $N = 9$
- Right-hemisphere stroke
- VR navigation task
 - Name virtual objects encountered along path
- Real-life wheelchair navigation task
- Battery of attention and neglect tests
- VR:
 - Correlated strongly with real wheelchair task
 - Detected lateralized attention deficits

VRNChair

- Uses MWC movement to feed any VR environment
- \(N = 34 \)
- VRNChair vs joystick
 - Lower motion sickness
 - Accurate performance

Kinect-Wheelchair Interface Controlled (KWIC) Smart Wheelchair

- 8 therapists, 50 hrs, 8 kids in MWC
- Played games using various control interfaces
- 2 became PWC drivers

Ocululs Rift

- A Wheelchair Training System – oculus and joystick
- Clinicians and expert wheelchair users with SCI
- Focus groups and interviews
- A virtual rehabilitation setting?
- Nausea

Wheelchair-Rift

- Oculus Rift
- Leap Motion hand tracking device
- Face validity by a panel of experts from a local Posture and Mobility Clinic

Reality-based User Interface System (RUIS)
The Smart House Living Lab
Campus of Excellence Moncloa International (CEI Moncloa)
University Politécnica de Madrid (UPM)
Brain-Computer Interfaces

- N = 1 SCI
- EEG
- beta oscillations were used for a self-paced (asynchronous) BCI control
- single bipolar EEG recording
- Task = Talk to each avatar
- Performance 90%

Isometric Joystick in TBI

- N=20, 1 year post-TBI
 - 12 men, 8 women
 - mean age 31
- Isometric vs conventional joystick
- Measures
 - Average trial completion time, and
 - root mean squared error
 - movement offset
 - movement error
 - number of significant changes in heading
- Isometric = faster and fewer forward driving errors
- Conventional = slower and fewer reverse driving errors

Isometric Joystick in CP

- Repeated-measures design
- N = 34 participants with CP and controls - matched by age and sex
- Isometric joystick vs. conventional joystick
- CP = lower driving performance in most variables of interest compared with controls.
- Isometric = fewer performance errors but prolonged reaction time.

Variable Compliance Joystick in Multiple Sclerosis

- Variable compliance joystick (VCJ) vs conventional joystick
- Fatigue algorithms applied
- N = 11 MS
- VCJ with fatigue algorithms = better performance
GAMECycle™

- An upper-body exercise machine for wheelchair users that incorporates handcycling with video game play

- Compatible with Nintendo GameCube™ games controlled with speed and steering

- Useful for exercise testing in SCI

Gamecycle in Spina Bifida

- N = 19 Spina Bifida
 - Most sedentary at baseline
- GameCycle vs standard ergometer
- 16 week exercise program
- No differences
 - Time spent exercising
 - # sessions attended
- Significant differences
 - Miles traveled
 - 15 miles w Gamecycle
 - 1 mile w Ergometer

Virtual Reality Simulator (VRSIM)

Real HERL

Virtual HERL
VRSIM Studies

- 2 trials, within-subjects repeated measures design
- N = 10 and N = 21 wheelchair users

- Course = Power Mobility Road Test (PMRT)
- NASA-TLX and Task Load Index

- Computer screen vs VR screens vs real driving
- Instrumented rollers vs conventional joystick

- Quantitative metrics from the simulator
- Observation scores from two experienced clinicians
Psychometrics

• Virtual vs observed PMRT scores –
 • high inter-rater reliability (78-90%)
 • high intra-rater reliability (71-90%)
• Moderate stability (ICC = .50 - .75)
 – PMRT scores (P<.001)
 – self-reported performance scores (P<.001)
• Computer screen and “roller off” mode easiest for participants
• VR and “roller off” perceived as somewhat different than real driving
 – mental demand (P=.007)
 – frustration (P=.007)
Motion Capture
Quantifying Driving

- Time
- Velocity
- Acceleration
- Jerk
- Collisions
- Time in periphery
- RMSE
Power Mobility Clinical Driving Assessment (PMCDA)

<table>
<thead>
<tr>
<th>Indoor</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drives forward (15 ft) in a straight line in 36” hallway</td>
<td>1–3</td>
</tr>
<tr>
<td>Drives backward 10 ft in a straight line in 36” hallway</td>
<td>1–3</td>
</tr>
<tr>
<td>Passes through 36” doorway</td>
<td>1–3</td>
</tr>
<tr>
<td>Avoids therapy balls approaching from left and right</td>
<td>1–3</td>
</tr>
<tr>
<td>Turns 90° while moving forward</td>
<td>1–3</td>
</tr>
<tr>
<td>Turns 90° and enters a doorway</td>
<td>1–3</td>
</tr>
<tr>
<td>Turns 90° while moving backward</td>
<td>1–3</td>
</tr>
<tr>
<td>Turns 180° in place to the left</td>
<td>1–3</td>
</tr>
<tr>
<td>Can safely maneuver in-between 2 chairs 32 in apart</td>
<td>1–3</td>
</tr>
<tr>
<td>Approaches an accessible sink</td>
<td>1–3</td>
</tr>
<tr>
<td>Approaches a transfer surface (bed or chair)</td>
<td>1–3</td>
</tr>
<tr>
<td>Negotiates over 1 in door/mock threshold (piece of wood)</td>
<td>1–3</td>
</tr>
<tr>
<td>Stops on command (emergency stop)</td>
<td>1–3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outdoor</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drives forward 30 ft in 30 s</td>
<td>1–3</td>
</tr>
<tr>
<td>Drives over an unpaved surface</td>
<td>1–3</td>
</tr>
<tr>
<td>Ascends 5° incline</td>
<td>1–3</td>
</tr>
<tr>
<td>Descends 5° incline</td>
<td>1–3</td>
</tr>
<tr>
<td>Ascends 10° incline</td>
<td>1–3</td>
</tr>
<tr>
<td>Descends 10° incline</td>
<td>1–3</td>
</tr>
<tr>
<td>Crosses a street</td>
<td>1–3</td>
</tr>
<tr>
<td>Rolls 10 ft across 5° side-slope</td>
<td>1–3</td>
</tr>
<tr>
<td>Ascends an ADA curb cut</td>
<td>1–3</td>
</tr>
<tr>
<td>Descends an ADA curb cut</td>
<td>1–3</td>
</tr>
</tbody>
</table>

Total 23–69
Mtech Games and HERL
Wheelchair Trainer Course
Computer Assisted Rehabilitation Environment (CAREN)
MANUAL WHEELCHAIR PROPULSION STUDIES
Brain Computer Interfaces
Questions?
dicianno@pitt.edu