Traumatic Brain Injury & Visual Impairment

Suzanne Wickum, OD, FAAO
University of Houston College of Optometry
Consultant, TIRR Memorial Hermann Hospital
Consultant, Houston Methodist Hospital
No Financial Disclosures
TBI in Military Personnel

DoD TBI data for US forces worldwide 2000-2013

Mild TBI 82.4%
Moderate TBI 8.2%
Severe TBI 1.0%
Penetrating TBI 1.6%
Not classifiable 6.8%

DVBIC data May 2013Q1
Percentage of TBI Patients with Visual Symptoms

- **Military**
 - PRC /PNS: 74-76%^{2,5}
 - Polytrauma/TBI: 76%⁶
 - TBI: 75%⁶
 - PRC blast: 66%⁷
 - PRC non-blast: 69%⁷

- **Civilian Estimates**: 45-60%^{8,9}
Types of Visual Symptoms in TBI

<table>
<thead>
<tr>
<th>Symptom</th>
<th>In-patient</th>
<th>Out-patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photophobia<sup>6,8,10</sup></td>
<td>7%</td>
<td>13-59%</td>
</tr>
<tr>
<td>Diplopia<sup>2,6</sup></td>
<td>7%</td>
<td>8-15%</td>
</tr>
<tr>
<td>Eyestrain<sup>10</sup></td>
<td></td>
<td>35%</td>
</tr>
<tr>
<td>Blur when reading<sup>10</sup></td>
<td></td>
<td>35%</td>
</tr>
<tr>
<td>Loss of place reading<sup>10</sup></td>
<td></td>
<td>60%</td>
</tr>
<tr>
<td>Reduced reading speed<sup>10</sup></td>
<td></td>
<td>50%</td>
</tr>
<tr>
<td>Words run together<sup>10</sup></td>
<td></td>
<td>40%</td>
</tr>
<tr>
<td>Reduced reading comprehension<sup>10</sup></td>
<td></td>
<td>40%</td>
</tr>
</tbody>
</table>
Figure 1.
Percentage of patients with subjective vision complaints and reading performance deficits. The number of patients with each anomaly/total number of patients measured is given in each bar. *Light sensitivity was found at a significantly higher frequency in the BR TBI group (p = 0.002).

Goodrich, et. al., 2013
Visual Acuity and TBI

<table>
<thead>
<tr>
<th>Acuity level</th>
<th>Civilian(^8)</th>
<th>PRC(^5)</th>
<th>PNS(^5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/60 or better</td>
<td>85%</td>
<td>78%</td>
<td>98%</td>
</tr>
<tr>
<td>20/70 – 20/100</td>
<td>3%</td>
<td>6%</td>
<td>0%</td>
</tr>
<tr>
<td>Worse than 20/100</td>
<td>5%</td>
<td>13%</td>
<td>2%</td>
</tr>
<tr>
<td>NLP (1 or both eyes)</td>
<td>7%</td>
<td>3% (OU)</td>
<td>0%</td>
</tr>
</tbody>
</table>
Visual Field Defects and TBI

<table>
<thead>
<tr>
<th>Type of VF Defect</th>
<th>Civilian</th>
<th>PRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHH</td>
<td>4%</td>
<td>2%</td>
</tr>
<tr>
<td>LHH</td>
<td>4%</td>
<td>16%</td>
</tr>
<tr>
<td>Quadranopsia</td>
<td>6%</td>
<td>4%</td>
</tr>
</tbody>
</table>

http://www.lighthouse.org/about-low-vision-blindness/vision-disorders/hemianopia/
Accommodative Dysfunction and TBI

– Civilian
 • Alvarez, et al8
 • Ciuffreda, et al11

– Military
 • Goodrich, et al2
 • Lew, et al12
 • Stelmack, et al6
 • Goodrich, et al7
24%	41%
22%	21%
47%	64% NBR; 69% BR
Convergence Insufficiency and TBI

- Civilian
 - Alvarez, et al8
 - Ciuffreda, et al11
 - Cohen, et al13

- Military
 - Brahm, et al5
 - Stelmack, et al6
 - Goodrich, et al2
 - Lew, et al12
A Retrospective Study of the Prevalence of Visual Deficits after Mild TBI Secondary to Blast Exposure during Military Deployment

<table>
<thead>
<tr>
<th>BV/Accom Dx</th>
<th># of Subjects (26)</th>
<th>% of Subjects</th>
<th>% in General Adult Pop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical</td>
<td>8</td>
<td>31</td>
<td>0.5 (HrT)</td>
</tr>
<tr>
<td>Ac Infacility</td>
<td>6</td>
<td>23</td>
<td>xx</td>
</tr>
<tr>
<td>CI</td>
<td>4</td>
<td>15</td>
<td>7.7</td>
</tr>
<tr>
<td>Ac Insufficiency</td>
<td>4</td>
<td>15</td>
<td>6.2</td>
</tr>
<tr>
<td>Strabismus</td>
<td>2</td>
<td>8</td>
<td>3.9</td>
</tr>
<tr>
<td>Basic EP</td>
<td>2</td>
<td>8</td>
<td>1.5</td>
</tr>
<tr>
<td>Ac Spasm</td>
<td>2</td>
<td>8</td>
<td>10.8</td>
</tr>
<tr>
<td>Basic XP</td>
<td>1</td>
<td>4</td>
<td>3.1</td>
</tr>
<tr>
<td>FVD</td>
<td>1</td>
<td>4</td>
<td>1.5</td>
</tr>
<tr>
<td>CN Palsy</td>
<td>1</td>
<td>4</td>
<td>xx</td>
</tr>
</tbody>
</table>
Military Patient Case:

• 27 year old male
• Active duty army sergeant
• CC:
 (+) Intermittent vertical diplopia
 (+) Words look “bunched up on the page” and he often skips lines when reading
 (+) Motion sickness and dizziness with walking
Additional History:

- 2 deployments
 - 2004-05 Iraq
 - 2/07-12/07 Iraq
- 6 IED blasts
- Last blast hit his vehicle and it was lifted from the ground
- He lost consciousness for 6 min

- Being treated for:
 - Headaches
 - PTSD
 - Dyslipidemia

- Being treated with:
 - Topamax (topiramate)
 - Klonopin (clonazepam)
 - Seroquel (quetiapine)
 - Lipitor (atorvastatin)
 - ASA

- POH (+) Glasses
Exam Findings:

- **Subjective Refraction:**
 - OD: -2.50 -2.00 x 014 20/20
 - OS: -2.50 -1.75 x 180 20/20
- **EOMs:** +1 OAIO OS
- **Maddox Rod @ near:**
<table>
<thead>
<tr>
<th>R</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>7BI, 3BU</td>
<td>5BI, 3BU</td>
</tr>
<tr>
<td>6BI, 2BU</td>
<td>6BI, 2BU</td>
</tr>
<tr>
<td>5BI, 3BU</td>
<td>5BI, 3BU</td>
</tr>
</tbody>
</table>

- **Associated Phoria:**
 - 2BU OD (Wesson)
- **Stereo acuity:**
 - Randot: 250”Global, 70” Local
 - With 2BU OD: 20” Local

Prism over OD
Outcome:

• Assessments:
 – CMA OU
 – Intermittent diplopia secondary to left hyper-deviation
 – Ruled out CN IV palsy

• Plan:
 – New spec Rx
 – 2BU OD Fresnel prism added to specs
 – F/U in 2 weeks
2 Week Follow-up Summary:

• Assessment:
 – OS hyper deviation with much improved symptoms since addition of prism

• Plan:
 – Prism will be ground into new spectacle Rx
Saccadic/Pursuit Dysfunction and TBI

- **Civilian**
 - Alvarez, et al\(^8\)
 - Ciuffreda, et al\(^{11}\)
- **Military**
 - Brahms, et al\(^5\)
 - Capo Aponte, et al\(^{10}\)
 - Goodrich, et al\(^2\)
 - Stelmack, et al\(^6\)
 - Goodrich, et al\(^7\)

\(^{8}\) 8%
\(^{5}\) 30% PRC; 23% PNS
\(^{10}\) 60% pursuit; 30% saccades
\(^{2}\) 19%
\(^{6}\) 6%
\(^{7}\) Saccades NBR 84%; BR 48%
\(^{7}\) Pursuits NBR 46%; BR 26%
Oculomotor Deficits in TBI

<table>
<thead>
<tr>
<th></th>
<th>Military Estimates</th>
<th>Civilian Estimates</th>
<th>Non-TBI General Population Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accommodative Dysfunction</td>
<td>21-69%(^2,6,7,12)</td>
<td>24-41%(^8,11)</td>
<td>6-17%</td>
</tr>
<tr>
<td>Convergence Dysfunction</td>
<td>28-48%(^2,5,6,12)</td>
<td>23-56%(^8,11,13)</td>
<td>7-8%</td>
</tr>
<tr>
<td>Vertical Deviation</td>
<td>31-55%(^10,14)</td>
<td>Not Available</td>
<td>5-9% (20%)</td>
</tr>
<tr>
<td>Saccadic &/or Pursuit Dysfunction</td>
<td>6-84%(^2,5,6,7,10)</td>
<td>8-51%(^8,11)</td>
<td><1.0%</td>
</tr>
</tbody>
</table>
Military Blast vs. Non-blast TBI

Figure 2.
Percentage of patients with oculomotor deficits. The number of patients with each anomaly/total number of patients measured is given in each bar.
*Saccadic was dysfunction was significantly higher in the NBR TBI group (p = 0.006).

Goodrich, et. al., 2013
Cranial Nerve III, IV, VI Palsies and TBI

• Civilian
 – Alvarez\(^8\) 6% 10% 4%
 – Ciuffreda\(^{11}\) 4% 3% 1%
 – VanStavern\(^{15}\) 12% 13% 6%

• Military
 – Goodrich\(^7\) (Data combines CN III, IV, VI palsies)
 • 16% of non-visually impaired
 • 42% of visually impaired
 • 20% of non-blast related polytrauma
 • 32% of blast related polytrauma
Ocular Pathology and TBI

• UK civilian study of 200 consecutive cases in an ED
• 84% of TBI patients had ocular findings within hours of admission to the ED16
 – ON trauma
 – Corneal/scleral tears
 – Papilledema
 – Pupil abnormality
 – Orbital fracture
 – SCH
 – Peri-ocular ecchymosis
Overall, the military and civilian TBI populations have much in common
Patient Case: Soccer Player

- 28 year old male
- Professional soccer player
- CC: Concussion 2 months prior with visual & vestibular symptoms, difficulty tracking the ball, trouble with near asthenopia, and photophobia
- “Feeling off and out of balance” since concussion
- “How long until I can get back to practice and games?”
• Additional History:
 – Took header to right temple in practice
 – Felt “dizzy & out of it” afterward, continued with practice
 – C/O: intermittent blur, trouble focusing, trouble tracking, and photophobia x 2 months
 – Will be starting vestibular therapy soon
 – (+) Phonophobia
 – When he does light training, his symptoms increase
 – Prior concussion in 2003, but “fully healed from it”
 – No prior ocular or visual deficits in past
 – No prior systemic conditions
 – No medications
Exam Findings:

- DVAsc: 20/10 OD, OS
- NVAsc: 20/12.5 OD, OS
- Retinoscopy: plano OU
- Filter Eval: 550nm (I/O)
- CVF/AVF: normal OD, OS
- Pupils: normal OU
- OH: normal OD, OS
• EOM: FROM OU
• (+) end gaze nystagmus
• Pursuits adequate
• Saccades inaccurate
• NPC x 3: 7cm with effort
 Mild head shaking/tremor
• DCTsc: orthophoria
• NCTsc: 14pd XP
• Stereo: 250”G/25”L

• Prism Bar Vergence @ N:
 – BO: x/20/10
 – Significant effort
 – Scrunching forehead
• AA: 9D OD, OS
• MEMsc: +0.75D OD, OS
• Accom Facility +/- 2.00
 – 9 cycles/min with effort
 – Binoc. (+) more difficult
Initial Assessment & Plan

- Photophobia indoors/outdoors related to concussion
- Prescribe selective wavelength filter contact lenses (CL)
 - Counseled about induced color distortions
Military Patient
Filter Glasses

Oakley

Adidas

Oakley

Adidas
Initial Assessment & Plan

• Difficulty with saccadic accuracy after concussion
• Rx: HTS pursuit & saccadic therapy; 3 min each 2x/day
• At practice and games while on sidelines and in stands track ball in real time
Initial Assessment & Plan

- Asthenopia secondary to convergence insufficiency (CI)
- CI decompensated secondary to concussion
- Rx: Gross convergence therapy & HTS therapy: Vergence BO, Autoslide vergence, Jump ductions; 5 min each, 2x/day
Initial Assessment & Plan

• The eye movement deficits and CI may be contributing to the patient’s dizziness; however, likely otolith mislocation causing most of vestibular symptoms.
Initial Assessment & Plan

• All findings and recommendations conveyed to patient and his team trainer in person.
• Summary report sent to team physician.
• Summary sent to vestibular therapist.
Follow-up Summary

<table>
<thead>
<tr>
<th>Time since initial eye examination</th>
<th>10 days</th>
<th>1 month</th>
<th>2 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliance with Vision Rehab</td>
<td>Doing more than Rx’d</td>
<td>Reduced slightly</td>
<td>Stable</td>
</tr>
<tr>
<td>Symptoms</td>
<td>Stable</td>
<td>Improving</td>
<td>Resolved</td>
</tr>
<tr>
<td>Kinesthetic Awareness</td>
<td>Improving</td>
<td>Normal</td>
<td>Normal</td>
</tr>
</tbody>
</table>
Follow-up Summary

<table>
<thead>
<tr>
<th>Time since initial eye examination</th>
<th>10 days</th>
<th>1 month</th>
<th>2 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vergence</td>
<td>Improving</td>
<td>Significant Improvement</td>
<td>Better than goals</td>
</tr>
<tr>
<td>Saccades & Pursuits</td>
<td>Stable</td>
<td>Pursuits good Sac improving</td>
<td>Normal</td>
</tr>
<tr>
<td>Vision Rehab</td>
<td>HTS+EcCircles</td>
<td>HTS+EcCircles</td>
<td>Discontinued</td>
</tr>
</tbody>
</table>
At time of vision rehab discharge:

• Loves his filter CLs!!!
• Vestibular therapy continues
• Started RTP protocol
 – Light running, goal kicking
• Returned to game play 6.5 months after concussive event
2 years later:

– “My light sensitivity hasn’t been a problem for the past year now. I definitely found the tinted contacts helpful as a transitional step for me towards reintegrating into practice and play. I don’t have any real residual side effects from the concussion but find that I monitor potential symptoms more closely and still wear a rugby helmet for comfort and peace of mind...”
Final Thoughts
References

References

References

