VIRTUAL DRIVING

Maria T. Schultheis, PhD
Elizabeth Whipple, BS

Department of Psychology & Biomedical Engineering, Science & Health System
Disclosures

• studies funded by NIH, ARRA and The Council on Brain Injury

• collaboration with Digital MediaWorks (DMW)

• editor “Handbook for the assessment of driving capacity”
“Driving is one of the most complex activities of daily living”
DRIVING AFTER NEUROLOGICAL COMPROMISE

Applied Neurotechnologies Lab
Expertise: Clinical Neuropsychology, Physical Medicine and Rehabilitation, Engineering

- Defining driving after TBI (NIH: R01)
- Driving after multiple sclerosis (NMSS)
- Driving after concussion (NIH: ARRA)
- Novice drivers (CDC)
- Driving and veterans with TBI/PTSD (Council on Brain Injury)

OVERARCHING OBJECTIVES

- Develop an integrated model of driving behavior that cuts across spectrum of impairment
- Identify new methods for assessment of driving capacity with and without neurological compromise
- Identify interventions for targeting individualized driver re-training needs
Defining the demands of driving

- Attention
- Visual Spatial
- Executive Function
- Information Processing
- Working Memory
- Vision
- Strength
- Proprioception
- Motor Control

- Physical/Sensory
- Cognitive
- Behavior
- Road Knowledge

- Frequency
- Self-Limiting
- Dual-tasks
- Risk Taking
Defining the demands of driving

- Society
- Environment
- State

Diagram:
- Physical/Sensory
- Cognitive
- Behavior
- Road Knowledge
Measures of Driving

- Paper and pencil cognitive tests
- Self-reporting questionnaires
- Motor vehicle driving reports
- On-road driving evaluations
The VR-Driver Simulation (VRDS)

Clinically usable
- Affordable to clinicians
- Not require large space
- Not require specialized personnel
- Low-tech/ non-intimidating
DREXEL-DMW VR DRIVING SIMULATOR
Driving Challenges
Established VRDS measures

- Speed
 - Average speed in a specific section (i.e., curves)
 - Approaching speed (i.e., stops)
 - Speed control (i.e., variability)

- Lane positioning
 - Lane management (i.e., maintaining position)
 - Lane busts to left or right

- Stopping behaviors
 - How far stop from stop sign?
 - How long wait at stop sign?
 - Did they come to “full stop” or “rolling stop”

- Pedals & Steering wheel
 - Pedal pressure
 - Steering behaviors (i.e., overcorrections)

- Driving Challenges
 - Scenarios that may not happen on road
 - Detours
 - Complex intersections
 - Abrupt events (i.e., pedestrian, car doors)

- Integrated Behavioral Recording
SIMULATED DRIVING AND TBI

What have we learned?

- Cognitive impairment is primary contributor to driving difficulties after TBI
 - Impaired attention (all types)
 - Slowed information processing speed
 - Impaired self-awareness
- Severity of impairment important factor
 - Many mild TBI are successful drivers
SIMULATED DRIVING AND TBI

What have we learned?

- What are the driving errors?
 - Variability
 - Speed, lane positioning
 - Susceptibility to overload
 - Performance decrement during basic tasks

- Other factors are important
 - Previous driving experience
 - Self-limiting behaviors
 - Driving frequency
 - Longer discontinuation
ARE THE QUESTIONS THE SAME FOR TBI & PTSD?
TBI and PTSD

- Traumatic Brain Injury
- Cognitive impairment
- Depression
- Fatigue
- Disinhibition
- Post Traumatic Stress Disorder
- Anxiety
- Sleep disruption
- Re-experiencing symptoms
- Fatigue

Cognition, Emotion, Behavior
PTSD and TBI and Driving

- Self report PTSD and risk taking behaviors
- Aggressive driving behaviors commonly reported

 Kuhn et al, 2010; Strom et al, 2012

- Higher self-reported aggressive driving in Iraq and Afghanistan veterans

 Kuhn et al, 2010
PTSD and TBI and Driving

- OIF Veterans reported that they sometimes or always fell into combat driving behaviors in civilian settings:
 - 25% drove through stop signs
 - 23% drove in the middle of the road or into oncoming traffic
 - 35% made lane changes or turns without signaling

- 20% reported to be anxious when driving at any time, with larger percentages in situations that mimic combat exposure:
 - 30% when driving near roadside debris
 - 41% in slowed or stopped traffic
 - 31% when passed by other cars
 - 49% when another car approached quickly or boxed them in
PTSD/TBI Simulated Driving

- PTSD/TBI veterans (n=18) compared to healthy controls (n=20)
- Drove 15 min route with intersections
- Driving errors recorded by CDRS:
 - Vehicle position
 - Visual scanning
 - Speed regulation
 - Lane maintenance
 - Signaling
 - Adjustment to stimuli
 - Gap acceptance

Classen et al, 2011
PTSD/TBI Simulated Driving

Main findings: Classen et al, 2011

- Veterans made more over-speeding errors
- Veterans made more adjustment to stimuli errors
- Controls made more signaling errors
PTSD/TBI – driving is different

• Questions about driving in PTSD/TBI are different

• Not only examine the driving errors – but more importantly what contributes to those errors?
PTSD/TBI – driving is different

• Not only examine impact of “traditional” factors contributing to driving but also other contributors
 • Emotionality
 • “Triggers”
 • Interaction of these with cognitive impairment

• Different approach- define difficulties and create individualized simulated driving
ACKNOWLEDGEMENTS:

The Council on Brain Injury

Philadelphia veterans affairs medical center
VETERAN DRIVING QUESTIONNAIRE

- Existing questionnaires are not specific enough for this unique population
 - Need to determine what driving errors veterans are making and what situations are most high-risk

- Steps of development
 - Literature review & clinician feedback
 - Focus groups
 - Pilot data
QUESTIONNAIRE DEVELOPMENT

• Literature review generated three categories:

 • Anxiety provoking situations

 27. When I drive near or next to roadside debris.

<table>
<thead>
<tr>
<th>Never Anxious</th>
<th>Sometimes</th>
<th>Always</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

 • High and low-risk behaviors

 62. Swerve or change lanes before driving under an overpass, or before coming out the other side.

<table>
<thead>
<tr>
<th>Never</th>
<th>Sometimes</th>
<th>Very Often</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

 • Common affective states

 83. I feel aggressive while driving.

<table>
<thead>
<tr>
<th>Never</th>
<th>Sometimes</th>
<th>Very Often</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

• All ratings on 5-point Likert scale
Focus Groups

• Procedure
 • 2 focus groups, 4 total participants
 • Began with discussion, open-ended questions
 • Gave each participant the VDQ draft, elicited feedback on individual items

• Outcome
 • Added missing items
 • Reworded questions
 • Removed non-pertinent items
VDQ PILOT DATA: SAMPLE OVERVIEW

<table>
<thead>
<tr>
<th></th>
<th>TBI/PTSD</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>$M = 32.41$, $SD = 7.25$ (Range = 23 – 48 years)</td>
<td>$M = 28.67$, $SD = 5.99$ (Range = 22 – 38 years)</td>
</tr>
<tr>
<td>Gender</td>
<td>21 male, 1 female</td>
<td>6 male, 0 female</td>
</tr>
<tr>
<td>Race</td>
<td>7 African-American, 1 Asian, 11 Caucasian, 3 Other</td>
<td>3 African-American, 3 Caucasian</td>
</tr>
<tr>
<td>Marital Status</td>
<td>3 Divorced, 12 Married/Partnered, 7 Single</td>
<td>1 Divorced, 2 Married/Partnered, 3 Single</td>
</tr>
<tr>
<td>Branch of Military</td>
<td>2 Air Force, 13 Army, 2 National Guard, 2 Navy, 3 Marines</td>
<td>4 Army, 1 Navy, 1 Marines</td>
</tr>
<tr>
<td>Education</td>
<td>$M = 14.68$ years, $SD = 1.84$ (Range = 12 – 18 years)</td>
<td>13 years, $SD = 2.45$ (Range = 12 – 18 years)</td>
</tr>
</tbody>
</table>
Pilot Study: Procedure

- Background and demographics
 - Time spent driving or in convoy during deployment
 - Years since deployment
- Sensation Seeking Scale-Version V (Zucherman, 2007)
 - Premorbid personality factors
- Driver's Angry Thoughts Questionnaire (Deffenbacher et al., 2003)
 - Cognitive component of driving
- DMV records
- VDQ
INITIAL FINDINGS: ANXIETY PROVOKING SITUATIONS

Boxed In
Approached
Debris
Tight Lanes
Potholes
Traffic

TBI/PTSD
Control
INITIAL FINDINGS: BEHAVIORS

- Careful Eye
- Speeding
- Seatbelt
- Forgetting
- Full Stop
- D.U.I.

TBI/PTSD vs. Control
INITIAL FINDINGS: AFFECTIVE STATES

- Very vigilant
- Confident
- In Control
- Aggressive
- Impatient
- Anxious
- Irritated

TBI/PTSD vs Control

Legend:
- Red: TBI/PTSD
- Blue: Control
DISCUSSION POINTS

• Biggest group differences found in ratings of anxiety provoking situations
 • VR implications
 • Exposure therapy
 • Habit training

• High-risk versus protective behaviors

• Qualitative reports
Virtual Driving

- Create specific scenarios related to driving that “trigger” PTSD or compromising behavior:
 - “being crowded in by other vehicles”
 - “seeing debris along road side”
Virtual Driving

• Integrate use of these systems with current interventions
 • Anxiety management
 • Anger management
 • Cognitive processing therapy
• Coupled with neuropsychological assessment
The road to success is still under construction!!!
SIMULATION SICKNESS

Simulation Sickness

Yes

No

HC TBI CVA
significant difference btw. HC and CVA
WHAT PREDICTS USER FEEDBACK?

User Feedback
Total Score

Age
Education
Cognition
Gender

Age .048*
STRENGTH: YOU CAN MEASURE EVERYTHING

Weakness: You can measure everything
DATA MANAGEMENT?

- 4 primary driving variables
- Every 50 milliseconds (total time = 30 min.)
- 9 different zones
- 7 different challenge triggers
- 70 participants
Simulation vs. Real?

- Research offers many new driving measures

- Few studies have done direct validation with “real world driving”
 - None with TBI

- Without evidence how will clinician use confidently?
Simulation versus Real

Distance (feet)

Intercept

-4 -2 0 2 4 6

0 500 1000 1500 2000 2500 3000

Distance (feet)
Closing thoughts.....

• Virtual driving can offer new opportunities for safe return to driving for veterans with TBI/PTSD
• Driving is different for TBI/PTSD veterans
• Defining the best use of driving simulators will help to improve:
 • Evaluation of driving difficulties
 • Identifying new interventions
Acknowledgments

<table>
<thead>
<tr>
<th>Philadelphia Veterans Affair</th>
<th>Drexel University: Applied Technologies Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keith Robinson, MD</td>
<td>Jocelyn Ang, BS</td>
</tr>
<tr>
<td>Rose Beister, PhD.</td>
<td>Kevin Manning, MS</td>
</tr>
<tr>
<td>Digital MediaWorks</td>
<td>Joshua McKeever, MS</td>
</tr>
<tr>
<td>Dean Klimchuk</td>
<td>Valerie Weisser, MS</td>
</tr>
<tr>
<td>Roman Mitura</td>
<td></td>
</tr>
<tr>
<td>Certified Driver Specialist.</td>
<td>Computer Science Dept:</td>
</tr>
<tr>
<td>Richard Nead, CDRS</td>
<td>Dario Salvucci, PhD</td>
</tr>
<tr>
<td>Carrie Monagle, OT, CDRS</td>
<td>University of Washington, Seattle</td>
</tr>
<tr>
<td></td>
<td>Linda Boyle, PhD</td>
</tr>
<tr>
<td></td>
<td>Dave Nygens, PhD</td>
</tr>
</tbody>
</table>
Thank You!

Maria T. Schultheis, Ph.D.

schultheis @ drexel.edu